Phototherapy is one of the “bread and butter” treatments in the newborn. For sure it has gone through changes over the years as different light sources have been developed that provide more limited spectrums of blue/green light wavelengths. Gone are the old long white tubes in favour of special blue light emitting banks of lights and with it bilirubin levels are effectively dropping quickly worldwide. There have been a couple concerns raised with phototherapy over the years. One concern has been the risk of DNA damage as shown by Ramy N et al in Jaundice, phototherapy and DNA damage in full-term neonates. It was found in this study that the duration of phototherapy but not it’s intensity were related to the extent of methylation of DNA which is a marker of damage. Shorter durations would therefore be preferable. Repair of damaged DNA is thought in some ways to contribute to risk of cancer so although this has not been demonstrated with phototherapy the concern has been raised before. The other concern pertains to the ELBW infant with very thin skin. In the randomized trial for babies under 1000g entitled Aggressive vs. conservative phototherapy for infants with extremely low birth weight. In this trial a lower threshold for starting phototherapy was used in the “aggressive group”. The findings of this study in a preplanned subgroup analysis was that the babies from 500-750g that had a lower threshold for starting and continuing phototherapy had a trend towards a higher mortality; relative risk, 1.13; 95% CI, 0.96 to 1.34 as the CI just crossed 1. With this information in the literature it stands to reason that the question would come up as to whether continuous phototherapy is needed or whether one could use cycled intermittent phototherapy to give infants “phototherapy breaks”.

Such a study has now been published

This study enrolled babies with birthweights between 401 – 1000g and Initially randomized using a 1:1:1 ratio to 3 treatment groups: continuous PT (usual care), a PT regimen of 30 minutes or more per hour for each cycle, or a PT regimen of 15 min/h or more. The minutes per hour of PT could be increased for the cycled if TSB values reached specified thresholds. After the first 100 patients a planned analysis was done and the 30 minute group was ended as there was no difference between this group and the 15 minute one. The light sources and spectral irradiance (combination of intensity and distance from the patient) used were all the same and collection times for serum bilirubin levels were standardized as much as possible. Bilirubin levels were collected daily for the first 7 days and anytime infants were on phototherapy. The authors also included a stepwise prolongation of phototherapy for the shorter cycled groups if bilirubin levels were not responding to the provided phototherapy. I have to say they really did a good job of removing as many potential variables to outcome as they could!

The primary outcomes were mean peak TSB levels and mean PT hours through day 14 across all centers and predischarge wave V latency brainstem auditory evoked potential (BAER). In total 305 infants were randomized in the study and the interestingly the study was stopped at that point as a larger study was approved to obtain more precise estimates in the future around mortality and morbidity as a primary outcome. During the trial the authors received approval to do so with this new primary outcome and so we have what we have to analyze.

The Results

The authors found that there was no difference in the mean peak bilirubin even among high risk patients when given cycled phototherapy for 15 minutes an hour vs continuous. The total amount of hours of phototherapy was approximately halved. No statistical difference in mortality was observed although as mentioned above this was not the primary endpoint of the study.

Looking at duration of phototherapy in terms of hours per day over the first two weeks is shown below. Although a pre-specified plan was in place to increase time as needed to decrease bilirubin levels the amount of time remained fairly consistent for the cycled group with some increase needed in the early days which would be expected given the typical higher biirbubin tendency in the first week of life.

The BAER tests did not demonsrate any difference between the children who had cycled or continuous phototherapy suggesting that no added neurotoxicity occurred from interrupting phototherapy.

What can we take from this?

All of these infants were ELBW and wth that had very thin skin. Would cycled phototherapy be as effective in more mature infants? As the authors of the study point out, there have already been several trials in more mature infants demonstrating such effects and arguing that continuous phototherapy is not needed. At the very least this paper and the others before it would argue that interrupting phototherapy to allow breastfeeding or some skin to skin time with the mother or father should be acceptable. In the past I can remember many instances of having ordered intensive phototherapy and then questioned whether mom can breastfeed as technically it is supposed to be continuous. With this information I would suggest that continuing to work on oral feeding skills at the breast is reasonable. Clearly this won’t work in the population studied here as they are too small but for the larger infants there would not seem to be harm.

I suspect the larger study to come may change practice if a higher mortality is indeed shown for continuous phototherapy but for now we will need to wait and see. In a few years we will get the chance to review that study here.