Just about all of our preterm infants born at <29 weeks start life out the same in terms of neurological injury.  There are of course some infants who may have suffered ischemic injury in utero or an IVH but most are born with their story yet to be told.  I think intuitively we have known for some time that the way we resuscitate matters.  Establishing an FRC by inflating the lungs of these infants after delivery is a must but as the saying goes the devil is in the details.

The Edmonton group led by Dr. Schmolzer has had several papers examined in these blogs and on this occasion I am reviewing an important paper that really is a follow-up study to a previous one looking at the impact of high tidal volume delivery after birth.  I have written on this previous paper before in It’s possibile! Resuscitation with volume ventilation after delivery.  On this occasion the authors have published the following paper; Impact of delivered tidal volume on the occurrence of intraventricular haemorrhage in preterm infants during positive pressure ventilation in the delivery room.This observational study had a simple enough premise.  Will the use of Vt > 6 mL/kg in infants given PPV for at least two minutes lead to worse rates of IVH?  All infants were < 29 weeks and if they had chest compressions or epinephrine were excluded.  All infants were treated equally in terms of delayed cord clamping and antenatal steroid provision.  Ventilation was done with a t-piece resuscitator and Vt measured with an NM3 monitor connected to the face mask.  First ultrasounds were done for all at 3 days of age.

What did the authors find?

One hundred and sixty five infants comprised this cohort.  Overall, 124 (75%) infants were in the high volume group compared to 41 (25%) with a mean VT<6 mL/kg. Median Vt were 5.3 (4.6-5.7) ml/kg for the low group and 8.7
(7.3-10.6) mL/kg which were significantly different.

When looking at the rates of IVH and the severity of those affected the results are striking.

IVH in the high VT group was diagnosed in 63 (51%) infants compared with 5 (13%) infants in the normal VT group (P=0.008).Severe IVH (grade III or IV) developed in 33/124 (27%) infants in the high VT group and 2/41 (6%) in the normal VT group (P=0.01)

Hydrocephalus, following IVH developed in 7/49 (14%) and 2/16 (13%) in the >6 mL/kg and <6 mL/kg VT groups.  Looking at other factors that could affect the outcome of interest the authors noted the following physiologic findings. Oxygen saturations were lower in the low volume group at  6, 13 and 14 min after birth while tissue oxygenation as measured by NIRS was similarly lower at 7,8 and 25 min after birth (P<0.001). Conversely, heart rate was significantly lower in the VT>6 mL/kg group at 5, 20 and 25 min after birth (P<0.001). Fraction of inspired oxygen was similar in both groups within the first 30 min. Systolic, diastolic and mean blood pressure was similar between the groups.  What these results say to me is that despite having lower oxygen saturations and cerebral oxygen saturation at various time points in the first 25 minutes of life the infants seem to be better off given that HR was lower in those given higher volumes despite similar FiO2.  Rates of volume support after admission were slightly higher in the high volume group but inotrope usage appears to be not significantly different.  Prophylactic indomethacin was used equally in the two cohorts.

Thoughts for the future

Once a preterm infant is admitted to the NICU we start volume targeted ventilation from the start.  In the delivery room we may think that we do the same by putting such infants on a volume guarantee mode after intubation but the period prior to that is generally done with a bag and mask.  Whether you use a t-piece resuscitator or an anesthesia bag or even a self inflating bag, you are using a pressure and hoping not to overdistend the alveoli.  What I think this study demonstrates similar to the previous work by this group is that there is another way.  If we are so concerned about volutrauma in the NICU then why should we feel any differently about the first few minutes of life.  Impairment of venous return from the head is likely to account for a higher risk of IVH and while a larger study may be wished for, the results here are fairly dramatic.  Turning the question around, one could ask if there is harm in using a volume targeted strategy in the delivery room?  I think we would be hard pressed to say that keeping the volumes under 6 mL/kg is a bad idea.  The challenge as I see it now is whether we rig up devices to accomplish this or do the large medical equipment providers develop an all in one system to accomplish this?  I think the time has come to do so and will be first in line to try it out if there is a possibility to do a trial.