by All Things Neonatal | Apr 20, 2018 | social media
As I prepare for a talk at the Canadian Association of Neonatal Nurses conference in Calgary tomorrow I am finding my excitement growing. The theme of the conference this year is “Neonatal Care: It Takes a Village” and I am lucky enough to be speaking twice to this audience.
The first talk is all about the utilization of social media to help create this village and the second about a journey our centre took as we made some changes to our management of hypoglycemia.
With respect to the first talk, I am becoming increasingly convinced that the role of social media in medicine is to help create awareness. There are so many publications that come out every week, month and year. The numbers are in the hundreds of thousands if not millions with so many journals both legitimate and predatory, publishing at this time. If you aren’t sure what predatory journals are you can read about them here.
The reality is that there is so much to digest out there and as the saying goes, not enough time! That’s where social media comes in. Being in a leadership role has its challenges. No matter how strongly you believe in something, if you don’t have the support of nursing (yes I know this may sound like pandering but it’s true) it is not going to fly in the hospital. Traditional methods for introducing change have been to review an article (typically doctors) and discuss the worthiness of the analysis at a teaching rounds. While nursing is often invited to such rounds, attendance is tough to get to any great deal. The docs though may think its a great idea and then the “memo” comes out. There are many who will follow what the directive says but how much do they truly understand of the change and as a result is their heart really in it?
A New Way To Spread The Word
Let’s face it, we are on our phones a lot! It’s really how we digest so much of the news out there these days. Who has the time to read a newspaper when the first paragraph of an article on our phone tells us 90% of what we really need to know? When nurses take their break in the lounge is that the latest New England Journal of Medicine article on their phone that they are reading? Maybe some but many (and I include docs, dieticians, respiratory therapists and others) are checking social media sites whether they be twitter, Facebook or even this blog. Want to get a message out? Put it into a digestible form where the analysis has been done and the arguments for change presented in a 500 – 1000 word form. This isn’t to say that the original articles in their entirety aren’t worth reading but if you want to disseminate the rationale for a change their is power in this medium to get the word out. Want a change to succeed, then first help people to understand the reason behind it and the transformation of practice will follow.
Going Global!
As I have said in several talks on the use of social media, if you present in a classroom you may educate 20 people, grand rounds 150 but in the world of social media its in the 1000s! Posting on Social Media gets the word out and far!
April 11th I re-released Automatic adjustments of FiO2. Ready for prime time? after seeing the technology that formed the basis of this post demonstrated for me firsthand. The map below demonstrates what I am speaking about when I say going global!
This post was read on every continent with the exception of Antarctica for a total of 1882 times that day! Whether it is a good strategy for all places or not is not the point. The point is that people are reading and talking about things that they may not have heard or thought of before. My goal in all of this is education and generating discussions. We need to learn and learning should be done together. Whether it is through comments on Facebook or directly on the Blog, we all benefit when we read, talk, debate and find a common ground with the most important patient and family being in the centre of it all.
As I prepare to present these concepts tomorrow I sincerely hope that we continue to see discussion coming from these posts and provide forums for our medical teams across the country to think about topics they might not have covered yet. Thank you to all who have read or will start reading these posts as I have as much to learn from you as you from me. Glad to be a part of such a wonderful conference and look forward to meeting som many of you tomorrow!
by All Things Neonatal | Apr 4, 2018 | hypoglycemia, Neonatal, Neonatology
Hypoglycemia has to be one of the most common conditions that we screen for or treat in the NICU and moreover in newborn care in general. The Canadian Pediatric Society identifies small for gestational age infants (weight <10th percentile), large for gestational age (LGA; weight > 90th percentile) infants, infants of diabetic mothers (IDMs) and preterm infants as being high risk for hypoglycemia. It is advised then to screen such babies in the absence of symptoms for hypoglycemia 2 hours after birth after a feed has been provided (whether by breast or bottle). I am sure though if you ask just about any practitioner out there, they will tell you a story about a baby with “no risk factors” who had hypoglycemia. These one-off cases have the effect though of making us want to test everyone for fear that we will miss one. If that is the case though should we be recommending that all babies get at least one check?
The Canadian Pediatric Surveillance Program (CPSP)
The CPSP is a branch of the Canadian Pediatric Society that “provides an innovative means to undertake active paediatric surveillance and increase awareness of childhood disorders that are high in disability, morbidity, mortality and economic cost to society, despite their low frequency. I submit my surveys each month as i hope other Canadian Pediatricians do and help to determine the impact of these rare conditions in our Canadian population. Like with any survey we rely on people taking the time to submit but there is always the risk that what is being sent in under represents the true burden of illness as some cases may not be identified. Having said that, it is the best we have!
Turning our attention to hypoglycemia in low risk newborns
From April 2014 to March 2016 the CPSP searched for these types of patients and just published the results of their findings in Hypoglycemia in unmonitored full-term newborns—a
surveillance study by Flavin MP et al. What I like about the study is that they have been able to look at a group of babies that fall outside those identified as being at risk in the CPS statement Screening guidelines for newborns at risk for low blood glucose. They were looking for severe hypoglycemia by using a threshold of < 2.0 mmol/L (36 mg/dl) and all infants must have received IV dextrose. In the end after excluding ineligible cases they had 93 babies who met criteria. Based on the Canadian birth rate this translates to an incidence of 1 in every 8378 births. These babies were all supposed to be low risk but there were in fact clues that while not strictly identified as risks in the CPS statement could have increased the likelihood of a low blood glucose. Twenty three percent of mothers had maternal hypertension and another 23% were obese while 47% had excessive weight gain during pregnancy. Furthermore, 8% of mothers were treated with a beta blocker (most likely labetalol I would think) during pregnancy which is a risk factor for hypoglycemia although not specifically cited in the current CPS statement.
A concerning finding as well was the likelihood of severe symptoms in this group on presentation. Twenty percent presented with major clinical signs (seizure, apnea or cyanosis). Median glucose levels at presentation were much lower than those without major signs (median = 0.8 mmol/L, interquartile range [IQR] = 0.5 versus 1.6 mmol/L, IQR = 0.7; P < 0.001). Lastly, providers were asked about neurodevelopmental concerns at discharge approximately 20% were thought to have issues.
Are these patients really low risk though?
Twenty five percent of the patients submitted had a birth weight less than the 10%ile for GA. These patients as per the CPS guideline recommendations are actually considered at risk and should have been screened. The second issue to address has to do with the way we diagnose diabetes in pregnancy. All women are provided with the oral glucose tolerance test around 28 weeks of pregnancy. No test is perfect but it is the best we have. Women who have excessive weight gain in pregnancy (almost 50% of the cohort) are at higher risk of developing diabetes or some degree of insulin resistance as are those who are classified as obese. I have long suspected and think it may be the case here that some babies who do not meet the criteria for screening as their mothers do not have a diagnosis of GDM actually are at risk due to some degree of insulin resistance or perhaps their mothers develop GDM later. The evidence for this are the occasional LGA babies who are born to mothers without a GDM diagnosis but who clearly have been exposed to high insulin levels as they behave like such affected infants with poor feeding and low sugars in the newborn period. The authors here comment on those that were SGA but how many in this cohort were LGA?
The effect of hypertension can also not be minimized which was present in about a quarter of patients. These babies while not being officially SGA may have experienced a deceleration in weight gain in the last few weeks but remained above the 10%ile. These infants would not have the glycogen stores to transition successfully but would not be targeted as being at risk by the current definitions.
Should we be screening everyone then?
If we acknowledge that about 25% were IUGR in this study (<10%ile) and should have been screened, the expected rate would be 1:1170 births alone. In Manitoba with our 17000 births a year we would capture about two extra babies a year which translates into a low of pokes for a lot of healthy babies. Given the further information that 1:5 babies who are identified may have neurodevelopmental concerns it would take about 2-3 years of testing to prevent one concern. That pick up rate for me is far too low to subject so many babies to testing. What this study though does highlight is the need to view risk factors a little less strictly. Babies who are almost meeting the criteria for being LGA or those whose mother’s have taken lebetalol should have a low threshold for screening. Should hypertension on medications, excessive maternal weight gain or obesity in the mother be considered a risk? What I didn’t see in the end of this study were patients who truly were AGA, being born to healthy non overweight mothers presenting as high risk.
Maybe what is really needed based on this study is to re-evaluate what we consider at risk. In the meantime, maybe we should be testing a few extra babies who fall into these “lesser” risk categories. Better yet a study isolating such patients and looking at the frequency of hypoglycemia in these patients is warranted to get a better idea of whether they are indeed risks.
by All Things Neonatal | Apr 2, 2018 | congenital heart defects, Neonatal, Neonatology
In 2017 the Canadian Pediatric Society published the practice point Pulse oximetry screening in newborns to enhance detection of critical congenital heart disease. In this document we recommended universal screening for CCHDs but stressed the following:
“Recognizing that delivery and time of discharge practices vary across Canada, the timing of testing should be individualized for each centre and (ideally) occur after 24 hours postbirth to lower FP results. And because the intent is to screen newborns before they develop symptoms, the goal should be to perform screening before they reach 36 hours of age.”
This recommendation was put in place to minimize the number of false positive results and prevent Pediatricians and Cardiologists nationwide from being inundated with requests to rule out CCHD as earlier testing may pick up other causes for low oxygen saturation such as TTN. The issue remains though that many patients are indeed discharged before 24 hours and in the case of midwife deliveries either in centres or in the home what do we do?
A Population Study From the Netherlands May Be of Help Here
Researchers in the Netherlands had a golden opportunity to answer this question as a significant proportion of births occur there in the home under the care of a midwife. Accuracy of Pulse Oximetry Screening for Critical Congenital Heart Defects after Home Birth and Early Postnatal Discharge by Ilona C. Narayen et al was published this month in J Peds. About 30% of births are cared for by a midwife with about 20% occurring in the home. The authors chose to study this population of infants who were all above 35 weeks gestation and not admitted to an intensive care nor had suspicion of CCHD prior to delivery. The timing of the screening was altered from the typical 24-48 hours to be two time points to be more reflective of midwives practice. All patients were recruited after birth with the use of information pamphlets. The prospective protocol was screening on 2 separate moments: on day 1, at least 1 hour after birth, and on day 2 or 3 of life. The criteria for passing or failing the test are the same as those outlined in the CPS practice point. As part of the study, patients with known CCHDs were also screened separately as a different group to determine the accuracy of the screening test in patients with known CCHD.
Results
There were nearly 24000 patients born during this period. Only 49 cases of CCHD were identified by screening and of these 36 had been picked up antenatally giving a detection rate of 73%. Out of 10 patients without prenatal diagnosis who also had saturation results available the detection rate was 50%. Three of the misses were coarctation of the aorta (most likely diagnosis to be missed in other studies), pulmonary stenosis (this one surprises me) and TGA (really surprises me). The false-positive rate of pulse oximetry screening (no CCHD) was 0.92%. The specificity was over 99% meaning that if you didn’t have CCHD you were very likely to have a negative test. Not surprisingly, most false- positives occurred on day 1 (190 on day 1 vs 31 infants on day 2 or 3). There were five patients missed who were not detected either by antenatal ultrasound. These 5 negatives ultimately presented with symptoms at later time points and all but one survived (TGA) so out of 24000 births the system for detecting CCHD did reasonably well in enhancing detection as they picked up another 5 babies that had been missed antenatally narrowing the undetected from 10 down to 5.
Perhaps the most interesting thing about the study though is what they also found. As the authors state: “Importantly, 61% (134/221) of the infants with false-positive screenings proved to have significant noncardiac illnesses re- quiring intervention and medical follow-up, including infection/ sepsis (n = 31) and PPHN or transient tachypnea of the newborn (n = 88)”
There are certainly detractors of this screening approach but remember these infants were all thought to be asymptomatic. By implementing the screening program there was opportunity to potentially address infants care needs before they went on to develop more significant illness. Under appreciated TTN could lead to hypoxia and worsen and PPHN could become significantly worse as well. I think it is time to think of screening in this way as being more general and not just about finding CCHD. It is a means to identify children with CCHD OR RESPIRATORY illnesses earlier in their course and do something about it!
by All Things Neonatal | Apr 1, 2018 | Neonatal, Neonatology, preemie, Prematurity, ventilation
For almost a decade now confirmation of intubation is to be done using detection of exhaled CO2. The 7th Edition of NRP has the following to say about confirmation of ETT placement “The primary methods of confirming endotracheal tube placement within the trachea are detecting exhaled CO2 and a rapidly rising heart rate.” They further acknowledge that there are two options for determining the presence of CO2 “There are 2 types of CO2 detectors available. Colorimetric devices change color in the presence of CO2. These are the most commonly used devices in the delivery room. Capnographs are electronic monitors that display the CO2 concentration with each breath.” The NRP program stops short of recommending one versus the other. I don’t have access to the costs of the colorimetric detectors but I would imagine they are MUCH cheaper than the equipment and sensors required to perform capnography using the NM3 monitor as an example. The real question though is if capnography is truly better and might change practice and create a safer resuscitation, is it the way to go?
Fast but not fast enough?
So we have a direct comparison to look at. Hunt KA st al published Detection of exhaled carbon dioxide following intubation during resuscitation at delivery this month. They started from the standpoint of knowing from the manufacturer of the Pedicap that it takes a partial pressure of CO2 of 4 mm Hg to begin seeing a colour change from purple to yellow but only when the CO2 reaches 15 mm Hg do you see a consistent colour change with that device. The capnograph from the NM3 monitor on the other hand is quantitative so is able to accurately display when those two thresholds are reached. This allowed the group to compare how long it took to see the first colour change compared to any detection of CO2 and then at the 4 and 15 mm Hg levels to see which is the quicker method of detection. It is an interesting question as what would happen if you were in a resuscitation and the person intubates and swears that they are in but there is no colour change for 5, 10 or 15 seconds or longer? At what point do you pull the ETT? Compare that with a quantitative method in which there is CO2 present but it is lower than 4. Would you leave the tube in and use more pressure (either PIP/PEEP or both?)? Before looking at the results, it will not shock you that ANY CO2 should be detected faster than two thresholds but does it make a difference to your resuscitation?
The Head to Head Comparison
The study was done retrospectively for 64 infants with a confirmed intubation using the NM3 monitor and capnography. Notably the centre did not use a colorimetric detector as a comparison group but rather relied on the manufacturers data indicating the 4 and 15 mm Hg thresholds for colour changes. The mean age of patients intubated was 27 weeks with a range of 23 – 34 weeks. The results I believe show something quite interesting and informative.
|
Median time secs (range) |
Earliest CO2 detection |
3.7 (0 – 44s) |
4 mm Hg |
5.3 (0 – 727) |
15 mm Hg |
8.1 (0 – 727) |
I wouldn’t worry too much about a difference of 1.6 seconds to start getting a colour change but it is the range that has me a little worried. The vast majority of the patients demonstrated a level of 4 or 15 mm Hg within 50 seconds although many were found to take 25-50 seconds. When compared to a highest level of 44 seconds in the first detection of CO2 group it leads one to scratch their head. How many times have you been in a resuscitation and with no CO2 change you keep the ETT in past 25 seconds? Looking closer at the patients, there were 12 patients that took more than 30 seconds to reach a threshold of 4 mm Hg. All but one of the patients had a heart rate in between 60-85. Additionally there was an inverse relationship found between gestational age and time to detection. In other words, the smallest of the babies in the study took the longest to establish the threshold of 4 and 15 mm Hg.
Putting it into context?
What this study tells me is that the most fragile of infants may take the longest time to register a colour change using the colorimetric devices. It may well be that these infants take longer to open up their pulmonary vasculature and deliver CO2 to the alveoli. As well these same infants may take longer to open the lung and exhale the CO2. I suppose I worry that when a resuscitation is not going well and an infant at 25 weeks is bradycardic and being given PPV through an ETT without colour change, are they really not intubated? In our own centre we use capnometry in these infants (looks for a wave form of CO2) which may be the best option if you are looking to avoid purchasing equipment for quantitative CO2 measurements. I do worry though that in places where the colorimetric devices are used for all there will be patients who are extubated due to the thought that they in fact have an esophageal intubation when the truth is they just need time to get the CO2 high enough to register a change in colour.
Anyways, this is food for thought and a chance to look at your own practice and see if it is in need of a tweak…