Capnography or colorimetric detection of CO2 in the delivery suite.  What to choose?

Capnography or colorimetric detection of CO2 in the delivery suite. What to choose?

For almost a decade now confirmation of intubation is to be done using detection of exhaled CO2. The 7th Edition of NRP has the following to say about confirmation of ETT placement “The primary methods of confirming endotracheal tube placement within the trachea are detecting exhaled CO2 and a rapidly rising heart rate.” They further acknowledge that there are two options for determining the presence of CO2 “There are 2 types of CO2 detectors available. Colorimetric devices change color in the presence of CO2. These are the most commonly used devices in the delivery room. Capnographs are electronic monitors that display the CO2 concentration with each breath.” The NRP program stops short of recommending one versus the other. I don’t have access to the costs of the colorimetric detectors but I would imagine they are MUCH cheaper than the equipment and sensors required to perform capnography using the NM3 monitor as an example. The real question though is if capnography is truly better and might change practice and create a safer resuscitation, is it the way to go?

Fast but not fast enough?

So we have a direct comparison to look at. Hunt KA st al published Detection of exhaled carbon dioxide following intubation during resuscitation at delivery this month. They started from the standpoint of knowing from the manufacturer of the Pedicap that it takes a partial pressure of CO2 of 4 mm Hg to begin seeing a colour change from purple to yellow but only when the CO2 reaches 15 mm Hg do you see a consistent colour change with that device. The capnograph from the NM3 monitor on the other hand is quantitative so is able to accurately display when those two thresholds are reached. This allowed the group to compare how long it took to see the first colour change compared to any detection of CO2 and then at the 4 and 15 mm Hg levels to see which is the quicker method of detection. It is an interesting question as what would happen if you were in a resuscitation and the person intubates and swears that they are in but there is no colour change for 5, 10 or 15 seconds or longer? At what point do you pull the ETT? Compare that with a quantitative method in which there is CO2 present but it is lower than 4. Would you leave the tube in and use more pressure (either PIP/PEEP or both?)? Before looking at the results, it will not shock you that ANY CO2 should be detected faster than two thresholds but does it make a difference to your resuscitation?

The Head to Head Comparison

The study was done retrospectively for 64 infants with a confirmed intubation using the NM3 monitor and capnography.  Notably the centre did not use a colorimetric detector as a comparison group but rather relied on the manufacturers data indicating the 4 and 15 mm Hg thresholds for colour changes.  The mean age of patients intubated was 27 weeks with a range of 23 – 34 weeks.  The results I believe show something quite interesting and informative.

Median time secs (range)
Earliest CO2 detection 3.7 (0 – 44s)
4 mm Hg 5.3 (0 – 727)
15 mm Hg 8.1 (0 – 727)

I wouldn’t worry too much about a difference of 1.6 seconds to start getting a colour change but it is the range that has me a little worried.  The vast majority of the patients demonstrated a level of 4 or 15 mm Hg within 50 seconds although many were found to take 25-50 seconds.  When compared to a highest level of 44 seconds in the first detection of CO2 group it leads one to scratch their head.  How many times have you been in a resuscitation and with no CO2 change you keep the ETT in past 25 seconds?  Looking closer at the patients, there were 12 patients that took more than 30 seconds to reach a threshold of 4 mm Hg.  All but one of the patients had a heart rate in between 60-85.  Additionally there was an inverse relationship found between gestational age and time to detection.  In other words, the smallest of the babies in the study took the longest to establish the threshold of 4 and 15 mm Hg.

Putting it into context?

What this study tells me is that the most fragile of infants may take the longest time to register a colour change using the colorimetric devices.  It may well be that these infants take longer to open up their pulmonary vasculature and deliver CO2 to the alveoli.  As well these same infants may take longer to open the lung and exhale the CO2.  I suppose I worry that when a resuscitation is not going well and an infant at 25 weeks is bradycardic and being given PPV through an ETT without colour change, are they really not intubated?  In our own centre we use capnometry in these infants (looks for a wave form of CO2) which may be the best option if you are looking to avoid purchasing equipment for quantitative CO2 measurements.  I do worry though that in places where the colorimetric devices are used for all there will be patients who are extubated due to the thought that they in fact have an esophageal intubation when the truth is they just need time to get the CO2 high enough to register a change in colour.

Anyways, this is food for thought and a chance to look at your own practice and see if it is in need of a tweak…

If A Little Caffeine Is Good Is A Lot Better?

If A Little Caffeine Is Good Is A Lot Better?

Caffeine seems to be good for preterm infants.  We know that it reduces the frequency of apnea in the this population and moreover facilitates weaning off the ventilator in a shorter time frame than if one never received it at all.  The earlier you give it also seems to make a difference as shown in the Cochrane review on prophylactic caffeine. When given in such a fashion the chances of successful extubation increase. Less time on the ventilator not surprisingly leads to less chronic lung disease which is also a good thing.

I have written about caffeine more than once though so why is this post different?  The question now seems to be how much caffeine is enough to get the best outcomes for our infants.  Last month I wrote about the fact that as the half life of caffeine in the growing preterm infant shortens, our strategy in the NICU might be to change the dosing of caffeine as the patient ages.  Some time ago though I wrote about the use of higher doses of caffeine and in the study analyzed warned that there had been a finding of increased cerebellar hemorrhage in the group randomized to receive the higher dosing.  I don’t know about where you work but we are starting to see a trend towards using higher caffeine base dosing above 5 mg/kg/d.  Essentially, we are at times “titrating to effect” with dosing being as high as 8-10 mg/kg/d of caffeine base.

Does it work to improve meaningful outcomes?

This month Vliegenthart R et al published a systematic review of all RCTs that compared a high vs low dosing strategy for caffeine in infants under 32 weeks at birth; High versus standard dose caffeine for apnoea: a systematic review. All told there were 6 studies that met the criteria for inclusion.  Low dosing (all in caffeine base) was considered to be 5- 15 mg/kg with a maintenance dose of 2.5 mg/kg to 5 mg/kg.  High dosing was a load of 5 mg/kg to 40 mg/kg with a maintenance of 2.5 mg/kg to 15 mg/kg.  The variability in the dosing (some of which I would not consider high at all) makes the quality of the included studies questionable so a word of warning that the results may not truly be “high” vs “low” but rather “inconsistently high” vs. “inconsistently low”.

The results though may show some interesting findings that I think provide some reassurance that higher dosing can allow us to sleep at night.

On the positive front, while there was no benefit to BPD and mortality at 36 weeks PMA they did find if they looked only at those babies who were treated with caffeine greater than 14 days there was a statistically significant difference in both reduction of BPD and decreased risk of BPD and mortality.  This makes quite a bit of sense if you think about it for a moment.  If we know that caffeine improves the chances of successful extubation and we also know it reduces apnea, then who might be on caffeine for less than 2 weeks?  The most stable of babies I would expect!  These babies were all < 32 weeks at birth.  What the review suggests is that those babies who needed caffeine for longer durations benefit the most from the higher dose.  I think I can buy that.

On the adverse event side, I suppose it shouldn’t surprise many that the risk of tachycardia was statistically increased with an RR of 3.4.  Anyone who has explored higher dosing would certainly buy that as a side effect that we probably didn’t need an RCT to prove to us.  Never mind that, have you ever taken your own pulse after a couple strong coffees in the morning?

What did it not show?

It’s what the study didn’t show that is almost equally interesting.  The cerebellar hemorrhages seen in the study I previously wrote about were not seen at all in the other studies.  There could be a lesson in there about taking too much stock in secondary outcomes in small studies…

Also of note, looking at longer term outcome measures there appears to be no evidence of harm when the patients are all pooled together.  The total number of patients in all of these studies was 620 which for a neonatal systematic review is not bad.  A larger RCT may be needed to conclusively tell us what to do with a high and low dosing strategy that we can all agree on.  What do we do though in the here and now?  More specifically, if you are on call tomorrow and a baby is on 5 mg/kg/d of caffeine already, will you intubate them if they are having copious apneic events or give them a higher dose of caffeine when CPAP or NIPPV that they are already on isn’t cutting it?  That is where the truth about how you feel about the evidence really comes out.  These decisions are never easy but unfortunately you sometimes have to make a decision and the perfect study hasn’t been done yet.  I am not sure where you sit on this but I think this study while certainly flawed gives me some comfort that nothing is truly standing out especially given the fact that some of the “high dose” studies were truly high.  Will see what happens with my next patient!

Gentle ventilation must start from birth

Gentle ventilation must start from birth

The lungs of a preterm infant are so fragile that over time pressure limited time cycled ventilation has given way to volume guaranteed (VG) or at least measured breaths.  It really hasn’t been that long that this has been in vogue.  As a fellow I moved from one program that only used VG modes to another program where VG may as well have been a four letter word.  With time and some good research it has become evident that minimizing excessive tidal volumes by controlling the volume provided with each breath is the way to go in the NICU and was the subject of a Cochrane review entitled Volume-targeted versus pressure-limited ventilation in neonates. In case you missed it, the highlights are that neonates ventilated with volume instead of pressure limits had reduced rates of:

death or BPD

pneumothoraces

hypocarbia

severe cranial ultrasound pathologies

duration of ventilation

These are all outcomes that matter greatly but the question is would starting this approach earlier make an even bigger difference?

Volume Ventilation In The Delivery Room

I was taught a long time ago that overdistending the lungs of an ELBW in the first few breaths can make the difference between a baby who extubates quickly and one who goes onto have terribly scarred lungs and a reliance on ventilation for a protracted period of time.  How do we ventilate the newborn though?  Some use a self inflating bag, others an anaesthesia bag and still others a t-piece resuscitator.  In each case one either attempts to deliver a PIP using the sensitivity of their hand or sets a pressure as with a t-piece resuscitator and hopes that the delivered volume gets into the lungs.   The question though is how much are we giving when we do that?

High or Low – Does it make a difference to rates of IVH?

One of my favourite groups in Edmonton recently published the following paper; Impact of delivered tidal volume on the occurrence of intraventricular haemorrhage in preterm infants during positive pressure ventilation in the delivery room. This prospective study used a t-piece resuscitator with a flow sensor attached that was able to calculate the volume of each breath delivered over 120 seconds to babies born at < 29 weeks who required support for that duration.  In each case the pressure was set at 24 for  PIP and +6 for PEEP.  The question on the authors’ minds was that all other things being equal (baseline characteristics of the two groups were the same) would 41 infants given a mean volume < 6 ml/kg have less IVH compared to the larger group of 124 with a mean Vt of > 6 ml/kg.  Before getting into the results, the median numbers for each group were 5.3 and 8.7 mL/kg respectively for the low and high groups.  The higher group having a median quite different from the mean suggests the distribution of values was skewed to the left meaning a greater number of babies were ventilated with lower values but that some ones with higher values dragged the median up.

Results

IVH < 6 mL/kg > 6 ml/kg p
1 5% 48%
2 2% 13%
3 0 5%
4 5% 35%
Grade 3 or 4 6% 27% 0.01
All grades 12% 51% 0.008

Let’s be fair though and acknowledge that much can happen from the time a patient leaves the delivery room until the time of their head ultrasounds.  The authors did a reasonable job though of accounting for these things by looking at such variables as NIRS cerebral oxygenation readings, blood pressures, rates of prophylactic indomethacin use all of which might be expected to influence rates of IVH and none were different.  The message regardless from this study is that excessive tidal volume delivered after delivery is likely harmful.  The problem now is what to do about it?

The Quandary

Unless I am mistaken, there isn’t a volume regulated bag-mask device that we can turn to for control of delivered tidal volume.  Given that all the babies were treated the same with the same pressures I have to believe that the babies with stiffer lungs responded less in terms of lung expansion so in essence the worse the baby, the better they did in the long run at least from the IVH standpoint.  The babies with the more compliant lungs may have suffered from being “too good”.  Getting a good seal and providing good breathes with a BVM takes a lot of skill and practice.  This is why the t-piece resuscitator grew in popularity so quickly.  If you can turn a couple of dials and place it over the mouth and nose of a baby you can ventilate a newborn.  The challenge though is that there is no feedback.  How much volume are you giving when you start with the same settings for everyone?  What may seem easy is actually quite complicated in terms of knowing what we are truly delivering to the patient.  I would put to you that someone far smarter than I needs to develop a commercially available BVM device with real-time feedback on delivered volume rather than pressure.  Being able to adjust our pressure settings whether they be manual or set on a device is needed and fast!

Perhaps someone reading this might whisper in the ear of an engineer somewhere and figure out how to do this in a device that is low enough cost for everyday use.

Can’t intubate to give surfactant? Maybe try this!

Can’t intubate to give surfactant? Maybe try this!

Intubation is not an easy skill to maintain with the declining opportunities that exist as we move more and more to supporting neonates with CPAP.  In the tertiary centres this is true and even more so in rural centres or non academic sites where the number of deliveries are lower and the number of infants born before 37 weeks gestational age even smaller.  If you are a practitioner working in such a centre you may relate to the following scenario.  A woman comes in unexpectedly at 33 weeks gestational age and is in active labour.  She is assessed and found to be 8 cm and is too far along to transport.  The provider calls for support but there will be an estimated two hours for a team to arrive to retrieve the infant who is about to be born.  The baby is born 30 minutes later and develops significant respiratory distress.  There is a t-piece resuscitator available but despite application the baby needs 40% oxygen and continues to work hard to breathe.  A call is made to the transport team who asks if you can intubate and give surfactant.  Your reply is that you haven’t intubated in quite some time and aren’t sure if you can do it.  It is in this scenario that the following strategy might be helpful.

Surfactant Administration Through and Laryngeal Mask Airway (LMA)

Use of an LMA has been taught for years in NRP now as a good choice to support ventilation when one can’t intubate.  The device is easy enough to insert and given that it has a central lumen through which gases are exchanged it provides a means by which surfactant could be instilled through a catheter placed down the lumen of the device.  Roberts KD et al published an interesting unmasked but randomized study on this topic Laryngeal Mask Airway for Surfactant Administration in Neonates: A Randomized, Controlled Trial. Due to size limitations (ELBWs are too small to use this in using LMA devices) the eligible infants included those from 28 0/7 to 35 6/7 weeks and ≥1250 g.  The infants needed to all be on CPAP +6 first and then fell into one of two treatment groups based on the following inclusion criteria: age ≤36 hours,
(FiO2) 0.30-0.40 for ≥30 minutes (target SpO2 88% and 92%), and chest radiograph and clinical presentation consistent with RDS.
Exclusion criteria included prior mechanical ventilation or surfactant administration, major congenital anomalies, abnormality of the airway, respiratory distress because of an etiology other than RDS, or an Apgar score <5 at 5 minutes of age.

Procedure & Primary Outcome

After the LMA was placed a y-connector was attached to the proximal end.  On one side a CO2 detector was placed and then a bag valve mask in order to provide manual breaths and confirm placement over the airway.  The other port was used to advance a catheter and administer curosurf in 2 mL aliquots.  Prior to and then at the conclusion of the procedure the stomach contents were aspirated and the amount of surfactant determined to provide an estimate of how much surfactant was delivered to the lungs.  The primary outcome was treatment failure necessitating intubation and mechanical ventilation in the first 7 days of life.  Treatment failure was defined upfront and required 2 of the following: (1) FiO2 >0.40 for >30
minutes (to maintain SpO2 between 88% and 92%), (2) PCO2 >65 mmHg on arterial or capillary blood gas or >70 on venous blood gas, or (3) pH <7.22 or 1 of the following: (1)  recurrent or severe apnea, (2) hemodynamic instability requiring pressors, (3) repeat surfactant dose, or (4) deemed necessary by medical provider.

Did it work?

It actually did. Of the 103 patients enrolled (50 LMA and 53 control) 38% required intubation in the LMA group vs 64% in the control arm.  The authors did not reach their desired enrollment based on their power calculation but that is ok given that they found a difference.  What is really interesting is that they found a difference in the clinical end point despite many infants clearly not receiving a full dose of surfactant as measured by gastric aspirate. Roughly 25% of the infants were found to have not received any surfactant, 20% had >50% of the dose in the stomach and the other 50+% had < 10% of the dose in the stomach meaning that the majority was in fact deposited in the lungs.  I suppose it shouldn’t come as a surprise that among the secondary outcomes the duration length of mechanical ventilation did not differ between two groups which I presume occurred due to the babies needing intubation being similar.  If you needed it you needed it so to speak. Further evidence though of the effectiveness of the therapy was that the average FiO2 30 minutes after being treated was significantly lower in the group with the LMA treatment 27 vs 35%.  What would have been interesting to see is if you excluded the patients who received little or no surfactant, how did the ones treated with intratracheal deposition of the dose fare?  One nice thing to see though was the lack of harm as evidenced by no increased rate of pneumothorax, prolonged ventilation or higher oxygen.

Should we do this routinely?

There was a 26% reduction in intubations in te LMA group which if we take this as the absolute risk reduction means that for every 4 patients treated with an LMA surfactant approach, one patient will avoid intubation.  That is pretty darn good!  If we also take into account that in the real world, if we thought that little of the surfactant entered the lung we would reapply the mask and try the treatment again.  Even if we didn’t do it right away we might do it hours later.

In a tertiary care centre, this approach may not be needed as a primary method.  If you fail to intubate though for surfactant this might well be a safe approach to try while waiting for a more definitive airway.  Importantly this won’t help you below 28 weeks or 1250g as the LMA is too small but with smaller LMAs might this be possible.  Stay tuned as I suspect this is not the last we will hear of this strategy!

An Old Drug Finds A New  Home In The Treatment of BPD.

An Old Drug Finds A New Home In The Treatment of BPD.

What is old is new again as the saying goes.  I continue to hope that at some point in my lifetime a “cure” will be found for BPD and is likely to centre around preventing the disease from occurring.  Will it be the artificial placenta that will allow this feat to be accomplished or something else?  Until that day we unfortunately are stuck with having to treat the condition once it is developing and hope that we can minimize the damage.  When one thinks of treating BPD we typically think of postnatal steroids.  Although the risk of adverse neurodevelopmental outcome is reduced with more modern approaches to use, such as with the DART protocol,most practitioners would prefer to avoid using them at all if possible.  We know from previous research that a significant contributor to the development of BPD is inflammation.  As science advanced, the specific culprits for this inflammatory cascade were identified and leukotrienes in particular were identified in tracheal lavage fluid from infants with severe lung disease.  The question then arises as to whether or not one could ameliorate the risk of severe lung disease by halting at least a component of the inflammatory cascade leading to lung damage.

Leukotriene Antagonists

In our unit, we have tried using the drug monteleukast, an inhibitor of leukotrienes in several patients.  With a small sample it is difficult to determine exactly whether this has had the desired effect but in general has been utilized when “all hope is lost”.  The patient has severe disease already and is stuck on high frequency ventilation and may have already had a trial of postnatal steroids.  It really is surprising that with the identification of leukotriene involvement over twenty years ago it took a team in 2014 to publish the only clinical paper on this topic.  A German team published Leukotriene receptor blockade as a life-saving treatment in severe bronchopulmonary dysplasia.in 2014 and to date as far as I can see remains the only paper using this strategy. Given that we are all looking for ways to reduce BPD and this is the only such paper out there I thought you might want to see what they found.  Would this be worth trying in your own unit?  Well, read on and see what you think!

Who was included?

This study had an unusual design that will no doubt make statistical purists cringe but here is what they did.  The target population for the intervention were patients with “life threatening BPD”.  That is, in the opinion of the attending Neonatologist the patient had a greater than 50% likelihood of dying and also had to meet the following criteria; born at < 32 weeks GA, <1500g and had to be ventilated at 28 days.  The authors sought a blinded RCT design but the Research Ethics Board refused due to the risk of the drug being low and the patients having such a high likelihood of death.  The argument in essence was if the patients were likely to die and this drug might benefit them it was unethical to deny them the drug.  The authors attempted to enroll all eligible patients but wound up with 11 treated and 11 controls.  The controls were patients either with a contraindication to the drug or were parents who consented to be included in the study as controls but didn’t want the drug.  Therapy was started for all between 28 – 45 days of age and continued for a wide range of durations (111+/-53 days in the study group).  Lastly, the authors derived a score of illness severity that was used empirically:

PSC = FiO2 X support + medications

– support was equal to 2.5 for a ventilator. 1.5 for CPAP and 1 for nasal cannulae or an oxygen hood

– medications were equal to 0.2 for steroids, 0.1 for diruetics or inhaled steroids, 0.05 for methylxanthines or intermittent diruetics.

Did it make a difference?

The study was very small and each patient who received the medication was matched with one that did not receive treatment.  Matching was based on GA, BW and the PSC with matching done less than 48 hours after enrollment in an attempt to match the severity of illness most importantly.

First off survival in the groups were notably different.  A marked improvement in outcome was noted in the two groups.  Of the deaths in the control group, the causes were all pulmonary and cardiac failure, although three patients died with a diagnosis of systemic inflammatory response syndrome.  That is quite interesting given that monteleukast is an anti-inflammatory medication and none of the patients in the treatment arm experienced this diagnosis.

The second point of interest is the trend in the illness severity score over time.  The time points in the figure are time 1 (start of study), time 2 (4 weeks of treatment), time 3 (end of treatment).  These patients improved much more over time than the ones who did not receive treatment.

The Grain of Salt

As exciting as the results are, we need to acknowledge a couple things.  The study is small and with that the risk of the results appearing to be real but in actual fact there being no effect is not minimal.  As the authors knew who was receiving monteleukast it is possible that they treated the kids differently in the unit.  If you believed that the medication would work or moreover wanted it to work, did you pay more attention on rounds and during a 24 hour period to those infants?  Did the babies get more blood gases and tighter control of ventilation with less damage to the lungs over time?  There are many reasons why these patients could have been different including earlier attempts to extubate.  The fact is though the PSC scores do show that the babies indeed improved more over time so I wouldn’t write it off entirely that they did in fact benefit.  The diagnosis of SIRS is a tough one to make in a newborn and I worry a little that knowing the babies didn’t receive an anti-inflammatory drug they were “given” that diagnosis.

Would I use it in spite of these faults? Yes.  We have used it in such cases but I can’t say for sure that it has worked.  If it does, the effect is not immediate and we are left once we start it not knowing how long to treat.  As the authors here say though, the therapeutic risk is low with a possibly large benefit.  I doubt it is harmful so the question we are left asking is whether it is right for you to try in your unit?  As always perhaps a larger study will be done to look at this again with a blinded RCT structure as the believers won’t show up I suspect without one!

Looking for a place to happen

Looking for a place to happen

This past week, Canada lost a rock icon in Gord Downie of the Tragically Hip.  My late high school, university and medical school days seem to have him and the band forever enmeshed in memories from that time.  In honour of his passing I thought it suitable to pay tribute to him by using one of the band’s famous song titles as the title for this post.  No this isn’t a post about the band but rather a controversial ventilation strategy.  While CPAP has been around for some time to support our infants after extubation, a new method using high frequency nasal ventilation has arrived and just doesn’t want to go away.  Depending on your viewpoint, maybe it should or maybe it is worth a closer look.  I have written about the modality before in High Frequency Nasal Ventilation: What Are We Waiting For?  While it remains a promising technology questions still remain as to whether it actually delivers as promised.

Better CO2 elimination?

For those who have used a high frequency oscillator, you would know that it does a marvelous job of removing CO2 from the lungs.  If it does so well when using an endotracheal tube, why wouldn’t it do just as good a job when used in a non-invasive way?   That is the hypothesis that a group of German Neonatologists put forth in their paper this month entitled Non-invasive high-frequency oscillatory ventilation in preterm infants: a randomised controlled crossover trial.  In this relatively small study of 26 preterm infants who were all less than 32 weeks at delivery, babies following extubation or less invasive surfactant application were randomized to either receive nHFOV then CPAP for four hours each or the reverse order for the same duration.  The primary outcome here was reduction in pCO2 with the goal of seeking a difference of 5% or more in favour of nHFOV.  Based on their power calculation they thought they would need 24 infants total and therefore exceeded that number in their enrollment.

The babies in both arms were a bit different which may have confounded the results.  The group randomized to CPAP first were larger (mean BW 1083 vs 814g), and there was a much greater proportion of males in the CPAP group.  As well, the group randomized first to CPAP had higher baseline O2 saturation of 95% compared to 92% in the nHFOV group.  Lastly and perhaps most importantly, there was a much higher rate of capillary blood sampling instead of arterial in the CPAP first group (38% vs 15%).  In all cases the numbers are small but when looking for such a small difference in pCO2 and the above mentioned factors tipping the scales one way or the other in terms of illness severity and accuracy of measurement it does give one reason to pause when looking at the results.

The Results

No difference was found in the mean pCO2 from the two groups.  As expected, pCO2 obtained from capillary blood gases nearly met significance for being higher than arterial samples (50 vs 47; p=0.052).  A similar rate of babies had to drop out of the study (3 on the nCPAP first and 2 on the nHFOV side).

In the end should we really be surprised by the results?  I do believe that in the right baby who is about to fail nCPAP a trial of nHFOV may indeed work.  By what means I really don’t understand.  Is it the fact that the mean airway pressure is generally set higher than on nCPAP in some studies?  Could it be the oscillatory vibration being a kind of noxious stimulus that prevents apneic events through irritation of the infant?

While traditional invasive HFOV does a marvelous job of clearing out CO2 I have to wonder how the presence of secretions and a nasopharynx that the oscillatory wave has to avoid (almost like a magic wave that takes a 90 degree turn and then moves down the airway) allows much of any of the wave to reach the distal alveoli.  It would be similar to what we know of inhaled steroids being deposited 90 or so percent in the oral cavity and pharynx.  There is just a lot of “stuff” in the way from the nostril to the alveolus.

This leads me to my conclusion that if it is pCO2 you are trying to lower, I wouldn’t expect any miracles with nHFOV.  Is it totally useless? I don’t think so but for now as a respiratory modality I think for the time being it will continue to be “looking for a place to happen”