The days of the Apgar score may be numbered

The days of the Apgar score may be numbered

One of the first things a student of any discipline caring for newborns is how to calculate the apgar score at birth.  Over 60 years ago Virginia Apgar created this score as a means of giving care providers a consistent snapshot of what an infant was like in the first minute then fifth and if needed 10, 15 and so on if resuscitation was ongoing.  For sure it has served a useful purpose as an apgar score of 0 and 0 gives one cause for real worry.  What about a baby with an apgar of 3 and 7 or 4 and 8?  There are certainly infants who have done very well who initially had low apgar scores and conversely those who had higher apgar scores who have had very significant deleterious outcomes including death.  I don’t mean to suggest that the apgar scores don’t provide any useful predictive value as they are used as part of the criteria to determine if a baby merits whole body cooling or not.  The question is though after 60+ years, has another score been created to provide similar information but enhance the predictive value derived from a score?

The Neonatal Resuscitation and Adaptation Score (NRAS)

Back in 2015 Jurdi et al published  Evaluation of a Comprehensive Delivery Room Neonatal Resuscitation and Adaptation Score (NRAS) Compared to the Apgar Score.  This new score added into a ten point score resuscitative actions taken at the 1 and 5 minute time points to create a more functional score that included interventions.  The other thing this new score addressed was more recent data that indicated a blue baby at birth is normal (which is why we have eliminated asking the question “is the baby pink?” in NRP.  Knowing that, the colour of the baby in the apgar score may not really be that relevant.  Take for example a baby with an apgar score of 3 at one minute who could have a HR over 100 and be limp, blue and with shallow breathing.  Such a baby might get a few positive pressure breaths and then within 10 seconds be breathing quite well and crying.  Conversely, they might be getting ongoing PPV for several minutes and need oxygen.  Were they also getting chest compressions?  If I only told you the apgar score you wouldn’t have much to go on.  Now look at the NRAS and compare the information gathered using two cardiovascular (C1&2), one neurological test (N1) and two respiratory assessments (R1&2).

The authors in this study performed a pilot study on only on 17 patients really as a proof of concept that the score could be taught and implemented.  Providers reported both scores and found “superior interrater reliability (P < .001) and respiratory component reliability (P < .001) for all gestational ages compared to the Apgar score.”

 

A Bigger Study Was Needed

The same group in 2018 this time led by Witcher published Neonatal Resuscitation and Adaptation Score vs Apgar: newborn assessment and predictive ability.  The primary outcome was the ability of a low score to predict mortality with a study design that was a non-inferiority trial.  All attended deliveries were meant to have both scores done but due to limited numbers of trained personnel who could appropriately administer both scores just under 90% of the total deliveries were assigned scores for comparison.  The authors sought to recruit 450 infants to show that a low NRAS score (0–3) would not be inferior to a similar Apgar at predicting death.  Interestingly an interim analysis found the NRAS to be superior to Apgar when 75.5% of the 450 were enrolled, so the study was stopped.  What led the apgar score to perform poorly in predicting mortality (there were only 12 deaths though in the cohort) was the fact that 49 patients with a 1 minute apgar score of 0-3 survived compared to only 7 infants with a low NRAS score.

The other interesting finding was the ability of the NRAS to predict the need for respiratory support at 48 hours with a one minute apgar score of 0-3 being found in 39% of those on support compared to 100% of those with a low NRAS.  Also at 5 minutes a score of 4-6 for the apgar was found in 48% of those with respiratory support at 48 hours vs 87% of those with a similar range NRAS.  These findings were statistically significant while a host of other conditions such as sepsis, hypoglycemia, hypothermia and others were no different in terms of predictive ability of the scores.

An Even Bigger Study is Needed

To be sure, this study is still small and missed just over 90% of all deliveries so it is possible there is some bias that is not being detected here.  I do think there is something here though which a bigger study that has an army of people equipped to provide the scoring will add to this ongoing story.  Every practitioner who resuscitates an infant is asked at some point in those first minutes to hour “will my baby be ok?”.  The truth is that the apgar score has never lived up to the hope that it would help us provide an accurate clairvoyant picture of what lies ahead for an infant.   Where this score gives me hope is that a score which would at the very least help me predict whether an infant would likely still be needing respiratory support in 48 hours provides the basic answer to the most common question we get in the unit once admitted; “when can I take my baby home”.  Using this score I could respond with some greater confidence in saying “I think your infant will be on support for at least 48 hours”.  The bigger question though which thankfully we don’t have to address too often for the sickest babies at birth is “will my baby survive?”.  If a larger study demonstrates this score to provide a greater degree of accuracy then the “Tipping Point” might just be that to switching over to the NRAS and leaving the apgar score behind.  That will never happen overnight but medicine is always evolving and with time you the reader may find yourself becoming very familiar with this score!

Was adding placement of EKG leads to NRP a good idea after all?

Was adding placement of EKG leads to NRP a good idea after all?

It is hard to believe but it has been almost 3 years since I wrote a piece entitled A 200 year old invention that remains king of all tech in newborn resuscitation. In the post I shared a recent story of a situation in which the EKG leads told a different story that what our ears and fingers would want us to believe. The concept of the piece was that in the setting of pulseless electrical activity (where there is electrical conductance in the myocardium but lack of contraction leaves no blood flow to the body) one could pick up a signal from the EKG leads when there is in fact no pulse or perfusion to vital organs. This single experience led me to postulate that this situation may be more common than we think and the application of EKG leads routinely could lead to errors in decision making during resuscitation of the newborn. It is easy to see how that could occur when you think about the racing pulses of our own in such situations and once chest compressions start one might watch the monitor and forget when they see a heart rate of 70 BPM to check for a corresponding pulse or listen with the stethoscope. I could see for example someone stopping chest compressions and continuing to provide BVM ventilation despite no palpable pulse when they see the QRS complex clearly on the monitor. I didn’t really have much evidence to support this concern but perhaps there is a little more to present now.

A Crafty Animal Study Provides The Evidence

I haven’t presented many animal studies but this one is fairly simple and serves to illustrate the concern in a research model. For those of you who haven’t done animal research, my apologies in advance as you read what happened to this group of piglets. Although it may sound awful, the study has demonstrated that the concern I and others have has is real.

For this study 54 newborn piglets (equivalent to 36-38 weeks GA in humans) were anesthetized and had a flow sensor surgically placed around the carotid artery.  ECG leads were placed as well and then after achieving stabilization, hypoxia was induced with an FiO2 of 0.1 and then asphyxia by disconnecting the ventilator and clamping the ETT.  By having a flow probe around the carotid artery the researchers were able to determine the point of no cardiac output and simultaneously monitor for electrical activity via the EKG leads.  Auscultation for heart sounds was performed as well.

The results essentially confirm why I have been concerned with an over reliance on EKG leads.

Of the 57 piglets, 14 had asystole and no carotid flow but in 23 there was still a heart rate present on the EKG with no detectable carotid flow. This yields a sensitivity of only 37%.  Moreover, the overall accuracy of the ECG was only 56%.

Meanwhile the stethoscope which I have referred to previously as the “king” in these situations had 100% sensitivity so remains deserving of that title.

What do we do with such information?

I think the results give us reason to pause and remember that faster isn’t always better.  Previous research has shown that signal acquisition with EKG leads is faster than with oximetry.  While a low heart rate detected quickly is helpful to know what the state of the infant is and begin the NRP pathway, we simply can’t rely on the EKG to tell us the whole story.  We work in interdisciplinary teams and need to support one another in resuscitations and provide the team with the necessary information to perform well.  The next time you are in such a situation remember that the EKG is only one part of the story and that auscultation for heart sounds and palpation of the umbilical cord for pulsation are necessary steps to demonstrate conclusively that you don’t just have a rhythm but a perfusing one.

I would like to thank the Edmonton group for continuing to put out such important work in the field of resuscitation!

Still performing awake intubations in newborns? Maybe this will change your mind.

Still performing awake intubations in newborns? Maybe this will change your mind.

If I look back on my career there have been many things I have been passionate about but the one that sticks out as the most longstanding is premedicating newborns prior to non-emergent intubation.  The bolded words in the last sentence are meant to reinforce that in the setting of a newborn who is deteriorating rapidly it would be inappropriate to wait for medications to be drawn up if the infant is already experiencing severe oxygen desaturation and/or bradycardia.  The CPS Fetus and Newborn committee of which I am a member has a statement on the use of premedication which seems as relevant today as when it was first developed.  In this statement the suggested cocktail of atropine, fentanyl and succinylcholine is recommended and having used it in our centre I can confirm that it is effective.  In spite of this recommendation by our national organization there remain those who are skeptical of the need for this altogether and then there are others who continue to search for a better cocktail.  Since I am at the annual conference for the CPS in Quebec city I thought it would be appropriate to provide a few comments on this topic.

Three concerns with rapid sequence induction (RSI) for premedication before intubation

1. “I don’t need it.  I don’t have any trouble intubating a newborn” – This is perhaps the most common reason I hear naysayers raise.  There is no question that an 60-90 kg practitioner can overpower a < 5kg infant and in particular an ELBW infant weighing < 1 kg.  This misses the point though.  Premedicating has been shown to increase success on the first attempt and shorten times to intubation. Dempsey 2006, Roberts 2006, Carbajal 2007, Lemyre 2009

2.  “I usually get in on the first attempt and am very slick so risk of injury is less.” Not really true overall.  No doubt there are those individuals who are highly successful but overall the risk of adverse events is reduced with premedication. (Marshall 1984, Lemyre 2009). I would also proudly add another Canadian study from Edmonton by Dr. Byrne and Dr. Barrington who performed 249 consecutive intubations with predication and noted minimal side effects but high success rates at first pass.

3. “Intubation is not a painful procedure”.  This one is somewhat tough to obtain a true answer for as the neonate of course cannot speak to this.  There is evidence available again from Canadian colleagues in 1984 and 1989 that would suggest that infants at the very least experience discomfort or show physiologic signs of stress when intubated using an “awake” approach.  In 1984 Kelly and Finer in Edmonton published Nasotracheal intubation in the neonate: physiologic responses and effects of atropine and pancuronium. This randomized study of atropine with or without pancuronium vs control demonstrated intracranial hypertension only in those infants in the control arm with premedication ameliorating this finding.  Similarly, in 1989 Barrington, Finer and the late Phil Etches also in Edmonton published Succinylcholine and atropine for premedication of the newborn infant before nasotracheal intubation: a randomized, controlled trial. This small study of 20 infants demonstrated the same finding of elimination of intracranial hypertension with premedication.  At the very least I would suggest that having a laryngoscope blade put in your oral cavity while awake must be uncomfortable.  If you still doubt that statement ask yourself whether you would want sedation if you needed to be intubated?  Still feel the same way about babies not needing any?

4.  What if I sedate and paralyze and there is a critical airway?  Well this one may be something to consider.  If one knows there is a large mass such as a cystic hygroma it may be best to leave the sedation or at least the paralysis out.  The concern though that there might be an internal mass or obstruction that we just don’t know about seems a little unfounded as a justification for avoiding medications though.

Do we have the right cocktail?

The short answer is “I don’t know”.  What I do know is that the use of atropine, an opioid and a muscle relaxant seems to provide good conditions for intubating newborns.  We are in the era of refinement though and as a recent paper suggests, there could be alternatives to consider;Effect of Atropine With Propofol vs Atropine With Atracurium and Sufentanil on Oxygen Desaturation in Neonates Requiring Nonemergency IntubationA Randomized Clinical Trial.  I personally like the idea of a two drug combination for intubating vs.. three as it leaves one less drug to worry about a medication error with.  There are many papers out there looking at different drug combinations.  This one though didn’t find a difference between the two combinations in terms of prolonged desaturations between the two groups which was the primary outcome. Interestingly though the process of intubating was longer with atropine and propofol.  Given some peoples reluctance to use RSI at all, any drug combination which adds time to the the procedure is unlikely to go over well.  Stay tuned though as I am sure there will be many other combinations over the next few years to try out!

 

 

Gentle ventilation must start from birth

Gentle ventilation must start from birth

The lungs of a preterm infant are so fragile that over time pressure limited time cycled ventilation has given way to volume guaranteed (VG) or at least measured breaths.  It really hasn’t been that long that this has been in vogue.  As a fellow I moved from one program that only used VG modes to another program where VG may as well have been a four letter word.  With time and some good research it has become evident that minimizing excessive tidal volumes by controlling the volume provided with each breath is the way to go in the NICU and was the subject of a Cochrane review entitled Volume-targeted versus pressure-limited ventilation in neonates. In case you missed it, the highlights are that neonates ventilated with volume instead of pressure limits had reduced rates of:

death or BPD

pneumothoraces

hypocarbia

severe cranial ultrasound pathologies

duration of ventilation

These are all outcomes that matter greatly but the question is would starting this approach earlier make an even bigger difference?

Volume Ventilation In The Delivery Room

I was taught a long time ago that overdistending the lungs of an ELBW in the first few breaths can make the difference between a baby who extubates quickly and one who goes onto have terribly scarred lungs and a reliance on ventilation for a protracted period of time.  How do we ventilate the newborn though?  Some use a self inflating bag, others an anaesthesia bag and still others a t-piece resuscitator.  In each case one either attempts to deliver a PIP using the sensitivity of their hand or sets a pressure as with a t-piece resuscitator and hopes that the delivered volume gets into the lungs.   The question though is how much are we giving when we do that?

High or Low – Does it make a difference to rates of IVH?

One of my favourite groups in Edmonton recently published the following paper; Impact of delivered tidal volume on the occurrence of intraventricular haemorrhage in preterm infants during positive pressure ventilation in the delivery room. This prospective study used a t-piece resuscitator with a flow sensor attached that was able to calculate the volume of each breath delivered over 120 seconds to babies born at < 29 weeks who required support for that duration.  In each case the pressure was set at 24 for  PIP and +6 for PEEP.  The question on the authors’ minds was that all other things being equal (baseline characteristics of the two groups were the same) would 41 infants given a mean volume < 6 ml/kg have less IVH compared to the larger group of 124 with a mean Vt of > 6 ml/kg.  Before getting into the results, the median numbers for each group were 5.3 and 8.7 mL/kg respectively for the low and high groups.  The higher group having a median quite different from the mean suggests the distribution of values was skewed to the left meaning a greater number of babies were ventilated with lower values but that some ones with higher values dragged the median up.

Results

IVH < 6 mL/kg > 6 ml/kg p
1 5% 48%
2 2% 13%
3 0 5%
4 5% 35%
Grade 3 or 4 6% 27% 0.01
All grades 12% 51% 0.008

Let’s be fair though and acknowledge that much can happen from the time a patient leaves the delivery room until the time of their head ultrasounds.  The authors did a reasonable job though of accounting for these things by looking at such variables as NIRS cerebral oxygenation readings, blood pressures, rates of prophylactic indomethacin use all of which might be expected to influence rates of IVH and none were different.  The message regardless from this study is that excessive tidal volume delivered after delivery is likely harmful.  The problem now is what to do about it?

The Quandary

Unless I am mistaken, there isn’t a volume regulated bag-mask device that we can turn to for control of delivered tidal volume.  Given that all the babies were treated the same with the same pressures I have to believe that the babies with stiffer lungs responded less in terms of lung expansion so in essence the worse the baby, the better they did in the long run at least from the IVH standpoint.  The babies with the more compliant lungs may have suffered from being “too good”.  Getting a good seal and providing good breathes with a BVM takes a lot of skill and practice.  This is why the t-piece resuscitator grew in popularity so quickly.  If you can turn a couple of dials and place it over the mouth and nose of a baby you can ventilate a newborn.  The challenge though is that there is no feedback.  How much volume are you giving when you start with the same settings for everyone?  What may seem easy is actually quite complicated in terms of knowing what we are truly delivering to the patient.  I would put to you that someone far smarter than I needs to develop a commercially available BVM device with real-time feedback on delivered volume rather than pressure.  Being able to adjust our pressure settings whether they be manual or set on a device is needed and fast!

Perhaps someone reading this might whisper in the ear of an engineer somewhere and figure out how to do this in a device that is low enough cost for everyday use.

Is  expired CO2 the key to making sustained inflation a standard in resuscitation?

Is expired CO2 the key to making sustained inflation a standard in resuscitation?

We can always learn and we can always do better.  At least that is something that I believe in.  In our approach to resuscitating newborns one simple rule is clear.  Fluid must be replaced by air after birth and the way to oxygenate and remove CO2 is to establish a functional residual capacity.  2000px-Lungvolumes.svgThe functional residual capacity is the volume of air left in the lung after a tidal volume of air is expelled in a spontaneously breathing infant and is shown in the figure. Traditionally, to establish this volume in a newborn who is apneic, you begin PPV or in the spontaneously breathing baby with respiratory distress provide CPAP to help inflate the lungs and establish FRC.

Is there another way?

Something that has been discussed now for some time and was commented on in the most recent version of NRP was the concept of using sustained inflation (SI) to achieve FRC. I have written about this topic previously and came to a conclusion that it wasn’t quite ready for prime time yet in the piece Is It Time To Use Sustained Lung Inflation In NRP?

The conclusion as well in the NRP textbook was the following:

“There are insufficient data regarding short and long-term safety and the most appropriate duration and pressure of inflation to support routine application of sustained inflation of greater than 5 seconds’ duration to the transitioning newborn (Class IIb, LOE B-R). Further studies using carefully designed protocols are needed”

So what now could be causing me to revisit this concept?   I will be frank and admit that whenever I see research out of my old unit in Edmonton I feel compelled to read it and this time was no different.  The Edmonton group continues to do wonderful work in the area of resuscitation and expand the body of literature in such areas as sustained inflation.

Can you predict how much of a sustained inflation is needed?

This is the crux of a recent study using end tidal CO2 measurement to determine whether the lung has indeed established an FRC or not.  Dr. Schmolzer’s group in their paper (Using exhaled CO2 to guide initial respiratory support at birth: a randomised controlled trial) used end tidal CO2 levels above 20 mmHg to indicate that FRC had been established.  If you have less CO2 being released the concept would be that the lung is actually not open.  There are some important numbers in this study that need to be acknowledged.  The first is the population that they looked at which were infants under 32 6/7 weeks and the second is the incidence of BPD (need for O2 or respiratory support at 36 weeks) which in their unit was 49%.  This is a BIG number as in comparison for infants under 1500g our own local incidence is about 11%.  If you were to add larger infants closer to 33 weeks our number would be lower due to dilution.  With such a large number though in Edmonton it allowed them to shoot for a 40% reduction in BPD (50% down to 30%).  To accomplish this they needed 93 infants in each group to show a difference this big.

So what did they do?

For this study they divided the groups in two when the infant wouldn’t breathe in the delivery room.  The SI group received a PIP of 24 using a T-piece resuscitator for an initial 20 seconds.  If the pCO2 as measured by the ETCO2 remained less than 20 they received an additional 10 seconds of SI.  In the PPV group after 30 seconds of PPV the infants received an increase of PIP if pCO2 remained below 20 or a decrease in PIP if above 20.  In both arms after this phase of the study NRP was then followed as per usual guidelines.

The results though just didn’t come through for the primary outcome although ventilation did show a difference.

Outcome SI PPV p
BPD 23% 33% 0.09
Duration of mechanical ventilation (hrs) 63 204 0.045

The reduction in hours of ventilation was impressive although no difference in BPD was seen.  The problem though with all of this is what happened after recruitment into the study.  Although they started with many more patients than they needed, by the end they had only 76 in the SI group and 86 in the PPV group.  Why is this a problem?  If you have less patients than you needed based on the power calculation then you actually didn’t have enough patients enrolled to show a difference.  The additional compounding fact here is that of the Hawthorne Effect. Simply put, patients who are in a study tend to do better by being in a study.  The observed rate of BPD was 33% during the study.  If the observed rate is lower than expected when the power calculation was done it means that the number needed to show a difference was even larger than the amount they originally thought was needed.  In the end they just didn’t have the numbers to show a difference so there isn’t much to conclude.

What I do like though

I have a feeling or a hunch that with a larger sample size there could be something here.  Using end tidal pCO2 to determine if the lung is open is in and of itself I believe a strategy to consider whether giving PPV or one day SI.  We already use colorimetric devices to determine ETT placement but using a quantitative measure to ascertain the extent of open lung seems promising to me.  I for one look forward to the continued work of the Neonatal Resuscitation–Stabilization–Triage team (RST team) and congratulate them on the great work that they continue doing.

It’s possible! Resuscitation with volume ventilation after delivery.

It’s possible! Resuscitation with volume ventilation after delivery.

I know how to bag a baby.  At least I think I do.  Providing PPV with a bag-valve mask is something that you are taught in NRP and is likely one of the first skills you learned in the NICU.  We are told to squeeze the bag at a rate of 40-60 breaths a minute.  According to the Laerdal website, the volume of the preterm silicone bag that we typically use is 240 mL.  Imagine then that you are wanting to ventilate a baby who is 1 kg.  How much should you compress the bag if you wish to delivery 5 mL/kg.  Five ml out of a 240 mL bag is not a lot of squeeze is it?  Think about that the next time you find yourself squeezing one.  You might then say but what about a t-piece resuscitator?  A good choice option as well but how much volume are you delivering if you set the initial pressures at 20/5 for example?  That would depend on the compliance of the lung of course.  The greater the compliance the more volume would go in. Would it be 5 mL, 10 ml or even 2.5 mL based on the initial setting?  Hard to say as it really depends on your seal and the compliance of the lung at the pressure you have chosen.  If only we had a device that could deliver a preset volume just like on a ventilator with a volume guarantee setting!

Why is this holy grail so important?

It has been over 30 years since the importance of volutrauma was demonstrated in a rabbit model. Hernandez LA et al published Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. The study used three models to demonstrate the impact of volume as opposed to pressure on injuring the lung of preterm rabbits.  Group 1 were rabbit ventilated at pressures of 15/30/45 cm H2O for one hour, group 2 rabbits with a cast around their thorax to limit volume expansion and group 3 sets of excised lungs with no restriction to distension based on the applied pressures.  As you might expect, limitation of over distension by the plaster cast led the greatest reduction in injury (measured as microvascular permeability) with the excised lungs being the worst.  In doing this study the authors demonstrated the importance of over distension and made the case for controlling volume more than pressure when delivering breaths to avoid excessive tidal volume and resultant lung injury.

The “Next Step” Volume Ventilator BVM

Perhaps I am becoming a fan of the Edmonton group.  In 2015 they published A Novel Prototype Neonatal Resuscitator That Controls Tidal Volume and Ventilation Rate: A Comparative Study of Mask Ventilation in a Newborn Manikin.  The device is tablet based and as described, rather than setting a PIP to deliver a Vt, a rate is set along with a volume to be delivered with a peep in this case set at +5.  fped-04-00129-g002_figure2This study compared 5 different methods of delivering PPV to a 1 kg preterm manikin.  The first was a standard self inflating bag, the next three different t-piece resuscitators and then the Next Step.  For the first four the goal was to deliver a pressure of 20/5 at a rate of 40-60 breaths per minute.  A test lung was connected to the manikin such that each device was used for a one minute period at three different levels of compliance (0.5 ml/cmH2O, 1.0 ml/cmH2O and then 2.0 ml/cm H2O representing increasing compliance.  The goal of the study was to compare the methods in terms of delivering a volume of 5 mL to this 1 kg model lung.  The order in which the devices were used was randomized for the 25 participants in the study who were all certified in NRP and included some Neonatologists.

Some Concerning Findings

As I said at the beginning, we all like to think we know how to ventilate a newborn with BVM.  The results though suggest that as compliance increases our ability to control how much volume we deliver to a lung based on a best guess for pressures needed is lacking.  One caveat here is that the pressures set on the t-piece resucitators were unchanged during the 1 minute trials but then again how often during one minute would we change settings from a starting point of 20/5?

Vt (mL)
0.5 mL/cmH20 1.0 mL/cmH20 2.0mL/cmH20
Self inflating 11.4 17.6 23.5
Neo-Tee 5.6 11.2 19.3
Neopuff 6.1 10 21.3
Giraffe 5.7 10.9 19.8
Next Step 3.7 4.9 4.5

Without putting in all the confidence intervals I can tell you that the Next Step was the tightest.  What you notice immediately (or at least I did) was that no matter what the compliance, the self inflating bag delivers quite an excessive volume even in experienced hands regardless of compliance.  At low compliance the t-piece resuscitators do an admirable job as 5-6 ml/kg of delivered Vt is reasonable but as compliance improves the volumes increase substantially.  It is worth pointing out that at low compliance the Next Step was unable to deliver the prescribed Vt but knowing that if you had a baby who wasn’t responding to ventilation I would imagine you would then try a setting of 6 ml/kg to compensate much like you would increase the pressure on a typical device. How might these devices do in a 29 week infant for example with better compliance than say a 24 week infant?  You can’t help but wonder how many babies are given minutes of excessive Vt after birth during PPV with the traditional pressure limited BVM setup and then down the road how many have BPD in part because of that exposure.

I wanted to share this piece as I think volume resuscitation will be the future.  This is just a prototype or at least back then it was.  Interestingly in terms of satisfaction of use, the Next Step was rated by the participants in the study as being the easiest and most comfortable to use of all the devices studied.  Adding this finding to the accuracy of the delivered volume and I think we could have a winner.